@drnickisaac

Modelling trends from occurrence records: challenges of rarity & data

Nick Isaac, Charlie Outhwaite, Gary Powney & Tom August

Half a century of map-making

Atlases: Stock & change in distribution

Biodiversity change using atlases

'Square counts' on repeat atlases reveal which species are increasing vs decreasing

Greatest losses occurred among butterflies, then birds

Thomas, JA et al. (2004). Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303: 1879–81

Historical records: Dutch Grayling

van Strien et al (2011) Ecological Applications, 21, 2510–2520

Simulation results: Type I error rates

Occupancy models outperform other methods

Isaac et al (2014) Meth Ecol Evol 5: 1052-1060

Defaunation Review

С

Global index of invertebrate abundance

D

Effects of disturbance on Lepidoptera

Dirzo et al (2014) Science, 345: 401-406

Species trends and ecosystem functions

- Linear trends since 1970 for 4431 species
- Turnover is higher pollinating and pest-controlling species
- These functions may be less resilient to change

Oliver et al (in press) Nature Communications

Drivers of change: Invasive ladybird

Declines in native ladybirds are attributable to the arrival of the invasive Harlequin ladybird

Similar patterns across 8 native species in both GB & Belgium

Roy et al (2012) Diversity & Distributions, 18: 717–725

Trends in Early-successional species

- Trends for 299 invertebrates of earlysuccessional habitats
- Woodland species have declined, heathland species increased
- Species with southerly range margins have increased

Figure 4. Posterior distribution of effect sizes for the mean trend of species in each ecosystem, from our Bayesian meta-analysis.

Dragonfly Traits & Trends

- Dragonflies with southerly distributions increased relative to other species since 1970.
- Lotic species fared better than lentic

Figure 2 The mean and 95 percentiles of the trait coefficients across 10,000 model iterations. Each categorical variable had a reference category which had a parameter estimate set to 0. The reference categories were as follows: region, "southern"; breeding habitat, "lentic"; and for overwintering stage, "eggs."

Powney, Cham, Smallshire & Isaac (2015). PeerJ, 3: e1410

Butterfly indicator from Occupancy models

Year

Source: State of Butterflies 2015

Priority Species Indicator [Abundance]

- "Priority Species" defined by 4 National Governments
- Birds, Bats, terrestrial mammals, Butterflies, Moths

Department for Environment Food & Rural Affairs

Ł.

Eaton, Burns, Isaac et al (2015) Biodiversity 16: 108-119

Priority Species Indicator [Distribution]

- Fitted values from linear trend models
- 110 Moths, 62 Hymenoptera & 7 other insects

Department for Environment Food & Rural Affairs

×,

Eaton, Burns, Isaac et al (2015) Biodiversity 16: 108-119

D1c: Indicator of Pollinating Insects 2014

from Occupancy models for 216 bee species

Indicators from Occupancy models 2015

- D1c: Pollinator Indicator 1980-2010
- C4b: Priority Species 1970-2012

Until 19 January!

Department for Environment Food & Rural Affairs

Occupancy models of British bees

Occupancy models of British bees

• Proble: lots of species' models look like this!

ANDRENA labiata

How far can we take this?

Taxonomic Group	Total number of species
Dragonflies	69
Hoverflies	287
Mosses	1,267
Bees	243
Spiders	658
Caddisflies	206
Gelechiid moths	152
Grasshoppers & allies	83
Wasps	275
Lichens	2,193
Ground beetles	355
Freshwater fish	75
Soldierflies	150
Empid & Dolichopodid flies	677
Ants	58
Craneflies	359
Centipedes	53
Millipedes	61
Non-marine molluscs	233
Total	7,493

Trends by taxon

Indicator plots, by taxon

How far can we take this?

Taxonomic Group	Total number of species	Species producing reliable results	Percentage of species lost	Total number of visits
Dragonflies	69	39	43%	246486
Hoverflies	287	153	47%	131629
Mosses	1,267	267	79%	81345
Bees	243	152	37%	73545
Spiders	658	254	61%	70557
Caddisflies	206	76	63%	62052
Gelechiid moths	152	56	63%	52845
Grasshoppers & allies	83	26	69%	43721
Wasps	275	98	64%	36162
Lichens	2,193	228	90%	32132
Ground beetles	355	84	76%	31786
Freshwater fish	75	13	83%	28193
Soldierflies	150	28	81%	23028
Empid & Dolichopodid flies	677	46	93%	20134
Ants	58	18	69%	18649
Craneflies	359	24	93%	17551
Centipedes	53	4	92%	12291
Millipedes	61	5	92%	10196
Non-marine molluscs	233	0	100%	4237
Total	7,493	1,604	79%	

Data rich groups

Recording intensity by taxonomic group

Summary

- Occupancy models make it possible to model change from biological records
- Works really well for butterflies, dragonflies, bees
- Not so good for other groups, or rare species
- We have some ideas!

Acknowledgements

Mart Eaton Richard Gregory Fiona Burns David Roy Colin Harrower Rob Dyer Mark Stephenson James Williams Christine Holleran Stephen Freeman

Department for Environment Food & Rural Affairs

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

DipteristsForum

